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Modeling and Optimization of Performance of 
Four Stroke Spark Ignition Injector Engine  
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Abstract— The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation 
programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance 
parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of 
engine performance parameter of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only 
optimal parameters are in the design and development of an engine and also allow to check and develop the design of engine and it’s 
operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. 
To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep, and A/F). the equations 
were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal valves obtained for the 
developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75. 

Index Terms— Bivariate models, Engine performance, Injector engine, Optimization, Performance parameters, Simulation, Spark ignition 

——————————      —————————— 

1 INTRODUCTION                                                                     
Oday simulation and optimization are important domains 
which attract many researchers from several fields and 
disciplines [1]. In recent years, extensive research has been 

conducted in the area of simulation to model large complex 
systems and understand their structures and behaviors. At the 
same time, a variety of design principles and approaches for 
computer based simulation has evolved.  

This paper will deal with the modeling and optimization of 
performance of four stroke spark ignition engine. Performance 
evaluation of automotive engines is of great importance for 
their economic operation. The method or criteria for assessing 
the engine performance include the determination of engine 
power, engine efficiency, and fuel consumption, considering 
the engine stroke, engine speed, mean effective pressure and 
bore. All of these affect the horse power, engine efficiency and 
its performance.  

High engine efficiency means obtaining the greatest 
possible power with lowest possible fuel cost or lowest fuel 
consumption [2]. At the design and development stage an 
engineer would design an engine with certain aims in his 
mind. The aims may include the variables like indicated 
power, brake power, brake specific fuel consumption, exhaust 
emissions, cooling of engine, maintenance free operation etc. 
The other task of the development engineer is to reduce the 
cost and improve power output and reliability of an engine. In 
trying to achieve these goals he has to try various design 
concepts. After the design the parts of the engine are 
manufactured for the dimensions and surface finish and may 

be with certain tolerances. In order to verify the designed and 
developed engine one has to go for testing and performance 
evaluation of the engines.  

Thus, in general, a development engineer will have to 
conduct a wide variety of engine tests starting from simple 
fuel and air-flow measurements to taking of complicated 
injector needle lift diagrams, swirl patterns and photographs 
of the burning process in the combustion chamber [3]. The 
nature and the type of the tests to be conducted depend upon 
various factors, some of which are: the degree of development 
of the particular design, the accuracy required, the funds 
available, the nature of the manufacturing company, and its 
design strategy.   

Engine tests experiment require costly research engine test 
beds and skilful technicians to run them. In order to reduce 
the cost and time of engine design and development, it, 
therefore, becomes necessary to develop a computer 
simulation program using mathematical model that will 
describe and quantify engine performance process. This 
process is enhanced by using a computer to simulate and 
optimize engine performance before embarking on full scale 
construction. It will ensure that only optimal parameters are in 
the design and development of an engine. This would reduce 
the cost and time of engine design and development to a 
minimum. 

This research work on the modeling, simulation and 
optimization of performance of four stroke spark ignition 
injector engine intends to  develop a computer simulation 
program or models for simulating  and optimizing   engine 
performance before embarking on full scale construction, and 
to develop bivariate mathematical models and optimize the 
engine performance of the model various engine speeds. This 
research work is narrowed down to four stroke spark ignition 
injector engine. MATLAB toolbox library equation was used in 
the development of the simulation models. General non-linear 
multivariate least squares modeling of experimental result was 
carried resulting in specific bivariate models for various 
engine performance measures. This enabled analytical 
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optimization of the engine performance using the tool of 
partial differentiation. Optimization is carried out on each of 
air-fuel ratio, SFC and thermal efficiency because the surface 
plots of their bivariate models revealed existence of curvature. 

2 MATHEMATICAL MODEL OF THE SYSTEM 
2.1 Theoretical Terms  
• Torque, T (Nm): The total effective load on the torque arm 

is the sum of the added weights plus the spring balance 
reading. Generally, the value of torque, T is the total weight 
applied multiplied by the torque arm length, L.  

 Torque, T = W+S
1000

L   (1) 
Where; T = Torque (Nm), (W+S) = total weight applied, 
Newton, L = torque arm Length or radius arm (m). 

• Power (kw): The power or rate of doing work is measured 
in watts (Nm/sec) or kilowatts and is defined as the torque 
multiplied by the angular velocity.  

Power (p) = Tω    (2) 
Where; T = torque, ω = Average speed = (2πN) 60⁄ , N = 
speed in rpm.  

• Fuel Consumption (kg/h): Having timed the 
consumption of a control volume of fuel, the fuel 
consumption in kg/h may be calculated as follows. For a 
control volume of 100cc the consumption per second is 
given by 100 t⁄  where t is the measured time. 
 Fuel consumption = V t⁄               (3) 

• Specific Fuel Consumption (kg/kwh): An important 
characteristic of an internal combustion engine is the 
specific fuel consumption which relates the thermal 
efficiency of the engine. This is defined as the weight of 
fuel required to generate each kilowatts hour of energy. 
 SfC = weight of fuel power⁄   (4) 

• Mass flow rate of fuel, MF: This is the quantity of fuel 
consumed in kg/s or weight of fuel supplied in kg per 
second. 

 MF =  (volume in litre x specific gravity)
(time insec x 1000)

   (5) 
• Efficiency, η: This is the ratio of brake power to energy 

supplied by the fuel.  
 η = BP/(Mf x Calorific   value)  (6) 
• Brake Mean Effective Pressure: Mean effective pressure 

is defined as hypothetical pressure which is thought to be 
acting on the piston throughout the power stroke. If it is 
based on brake power it is called brake mean effective 
pressure. 

  B. M. E. P. = bp
LAn

= 60 ×1000 ×bp
LAnK

=  60000 ×BP
LAnK

 (7) 

2.2 Model Description 
The laws governing real systems cannot result from pure 
analytical modeling because of complications of non-linearity. 
For this reason approximate system-specific models are 
derived to obey experimentally determined system responses. 
The approximate models are always determined on the 
criterion that error between experimental and mathematical 

responses must be minimum. The least squares approximation 
theory is chosen to be a criterion for mathematical modeling in 
this work. 

2.3 Bivariate Quadratic Least Squares Model of the 
System Responses  

Generally speaking least squares approximation of a response 
from a set of scattered data is based on minimizing square of 
experimental error. The generalized presentation of non-linear 
least squares approximation theory that is found very 
applicable in bivariate analysis presented here is seen in [4]. 
Suppose provided are 𝑛 experimental responses 𝑧𝑖 at positions 
𝒙𝑖 in a real d-dimensional parameter space, that is the vector 
𝒙𝑖𝜖𝑅𝑑 where 𝑖𝜖[1, 2, … . .𝑛]. The least squares method seeks to 
fix a function 𝑧(𝒙) that approximates the experimental 
responses 𝑧𝑖 by minimizing the sum of squares of Euclidian 
error norms‖𝑧(𝒙𝑖)− 𝑧𝑖‖. The error functional thus reads: 
  𝐸𝑁𝐿𝑆 = ∑ ‖𝑧(𝒙𝑖)− 𝑧𝑖‖2𝑛

𝑖=1    (8)  
The approximation polynomial is generally given in the form 
 𝑧(𝒙) = [𝒂(𝒙)]𝑇𝒃    (9) 
Where; 𝒂(𝒙) = {𝑎1(𝒙) 𝑎2(𝒙) … …𝑎𝑟(𝒙)}𝑇 is the polynomial of 
basis vector and 𝒃 = {𝑏1 𝑏2 … … 𝑏𝑟}𝑇 is the vector of coefficients 
of approximation function 𝑧(𝒙). For illustration the quadratic 
bivariate approximation function 𝑧(𝒙) has dimension 𝑑 = 2 
and order 𝑝 = 2 such that  
𝑧(𝒙) = 𝑧(𝑥,𝑦) = 𝑏1 + 𝑏2𝑥 + 𝑏3𝑦 + 𝑏4𝑥2 + 𝑏5𝑥𝑦+ 𝑏6𝑦2         (10a) 

𝑧(𝒙) = {1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2}

⎩
⎪
⎨

⎪
⎧
𝑏1
𝑏2
𝑏3
𝑏4
𝑏5
𝑏6⎭
⎪
⎬

⎪
⎫

   (10b) 

From which it is seen that 𝒂(𝒙) = {1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2}𝑇 and 
𝒃 = {𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6}𝑇 and 𝑟 = 6. As shown on the works [5-
6], the length or number of elements in 𝒂(𝒙) or 𝒃 is generally 
given as  𝑟 = (𝑑+𝑝)!

𝑑!𝑝!
. At the experimental points Eq.(2) which 

reads 𝑧(𝒙) = [𝒂(𝒙𝑖)]𝑇𝒃 is inserted in Eq.(1) to give: 
 𝐸𝑁𝐿𝑆(𝒃) = ∑ ‖[𝒂(𝒙𝑖)]𝑇𝒃 − 𝑧𝑖‖2𝑛

𝑖=1   (11) 
The coefficient vector 𝒃 that minimizes the error functional 
𝐸𝑁𝐿𝑆(𝒃) is determined by differentiating 𝐸𝑁𝐿𝑆(𝒃) [7] with 
respect to 𝒃 and equated to zero to give:  
 ∑ 2𝒂(𝒙𝑖){[𝒂(𝒙𝑖)]𝑇𝒃 − 𝑧𝑖} = 𝟎𝑛

𝑖=1   (12a) 
This gives: ∑ 𝒂(𝒙𝑖)[𝒂(𝒙𝑖)]𝑇𝒃 − ∑ 𝒂(𝒙𝑖)𝑧𝑖𝑛

𝑖=1 = 𝟎𝑛
𝑖=1  (12b) 

Eq. (5) is re-arranged to give the minimum-error coefficient 
vector 𝒃 as: 𝒃 = {∑ 𝒂(𝒙𝑖)[𝒂(𝒙𝑖)]𝑇𝑛

𝑖=1 }−1 ∑ 𝒂(𝒙𝑖)𝑧𝑖𝑛
𝑖=1  (13) 

The minimum-error coefficient vector 𝒃 as given in Eq.(13) is 
inserted in Eq.(9) to give the needed approximation 
polynomial as: 
𝑧(𝒙) = [𝒂(𝒙)]𝑇{∑ 𝒂(𝒙𝑖)[𝒂(𝒙𝑖)]𝑇𝑛

𝑖=1 }−1 ∑ 𝒂(𝒙𝑖)𝑧𝑖𝑛
𝑖=1  (14) 

For the quadratic bivariate approximation the function 𝑧(𝒙) 
becomes: 
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𝑧(𝒙) = {1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2}

⎣
⎢
⎢
⎢
⎢
⎡

∑

⎩
⎪
⎨

⎪
⎧

1
𝑥𝑖
𝑦𝑖
𝑥𝑖2
𝑥𝑖𝑦𝑖
𝑦𝑖2 ⎭

⎪
⎬

⎪
⎫

{1 𝑥𝑖 𝑦𝑖 𝑥𝑖2 𝑥𝑖𝑦𝑖 𝑦𝑖2}𝑛
𝑖=1

⎦
⎥
⎥
⎥
⎥
⎤
−1

∑

⎩
⎪
⎨

⎪
⎧

1
𝑥𝑖
𝑦𝑖
𝑥𝑖2
𝑥𝑖𝑦𝑖
𝑦𝑖2 ⎭

⎪
⎬

⎪
⎫

𝑧𝑖𝑛
𝑖=1     (14a) 

 
This on multiplying out gives 

𝑧(𝒙) = {1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2}

⎣
⎢
⎢
⎢
⎢
⎢
⎡

∑

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1 𝑥𝑖 𝑦𝑖 𝑥𝑖2 𝑥𝑖𝑦𝑖 𝑦𝑖2

𝑥𝑖 𝑥𝑖2 𝑥𝑖𝑦𝑖 𝑥𝑖3 𝑥𝑖2𝑦𝑖 𝑥𝑖𝑦𝑖2

𝑦𝑖 𝑥𝑖𝑦𝑖 𝑦𝑖2 𝑥𝑖2𝑦𝑖 𝑥𝑖𝑦𝑖2 𝑦𝑖3

𝑥𝑖2 𝑥𝑖3 𝑥𝑖2𝑦𝑖 𝑥𝑖4 𝑥𝑖3𝑦𝑖 𝑥𝑖2𝑦𝑖2

𝑥𝑖𝑦𝑖 𝑥𝑖2𝑦𝑖 𝑥𝑖𝑦𝑖2 𝑥𝑖2𝑦𝑖 𝑥𝑖2𝑦𝑖2 𝑥𝑖𝑦𝑖3

𝑦𝑖2 𝑥𝑖𝑦𝑖2 𝑦𝑖3 𝑥𝑖2𝑦𝑖2 𝑥𝑖𝑦𝑖3 𝑦𝑖4 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑛
𝑖=1

⎦
⎥
⎥
⎥
⎥
⎥
⎤
−1

∑

⎩
⎪
⎨

⎪
⎧

1
𝑥𝑖
𝑦𝑖
𝑥𝑖2
𝑥𝑖𝑦𝑖
𝑦𝑖2 ⎭

⎪
⎬

⎪
⎫

𝑧𝑖𝑛
𝑖=1    (15) 

Eq.(15) is used in the modeling and optimization of engine 
performances as presented below. In the engine performance 
test experiment, the rotational speed [rev/min] designated 𝑥 
and torque [Nm] designated 𝑦 are the independent variables 
while each of brake power [Kw], time for consumption of 
100cc [s], air-fuel ratio, specific fuel consumption (SFC) 
[Kg/kwh], thermal efficiency and mean effective pressure 
(MEP) [bar] are the responses designated  𝑧(𝑥, 𝑦). In order to 
make use of Eq.(15) for each of the responses 𝑧(𝑥,𝑦) a 
summation table is formed as shown in table.1.  

2.4 Methodoly for use of the System Model 
The idea of general non-linear multivariate least squares 
regression is used in generating a novel bivariate 
approximation of the studied system as presented in Eq.(15) 
The general quadratic bivariate model has the form: 
𝑧(𝑥,𝑦) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦+ 𝑎3𝑥2 + 𝑎4𝑥𝑦 + 𝑎5𝑥𝑦2 (16a) 
This can be put in the vector form: 

𝑧(𝒙,𝒚) = {1,𝑥,𝑦, 𝑥2,𝑥𝑦, 𝑦2}

⎩
⎪
⎨

⎪
⎧
𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5⎭
⎪
⎬

⎪
⎫

   (16b) 

It must be noted that the right hand side of Eq.(15) with 
subscripts i is numerically calculated from the experimental 
values to give the numerical coefficients 𝑎0,𝑎1,𝑎2,  𝑎3, 𝑎4,𝑎5,𝑎6. 
The values of table 1 are summation values calculated from 
experimental data and are used in the subscripted part of Eq.(15) 
to generate the model coefficients ( 𝑎0, 𝑎1 ,𝑎2, 𝑎3, 𝑎4,𝑎5,𝑎6). 
The accuracy of table 1 is absolutely guaranteed. For example 
the summation associated with 𝑥(𝑠𝑝𝑠𝑠𝑑) in table 1 is 21000 
which is derived from experimental results by summing 
elements of first column as follows 4500 + 4000 + 3500 +
3000 + 2500 + 2000 + 1500 = 21000 

All the bivariate models are calculated from Eq.(15) by 
replacing the subscripted quantities with experimental 
summation values in table.1 leading to the generation of 
relevant coefficients ( 𝑎0,  𝑎1,𝑎2,  𝑎3, 𝑎4,𝑎5,𝑎6 ) of the models. The 
meaning of the surface plots (Figs.1a–1f) are obvious from 
looking at the axis of the plots. Considering the brake power 
for example, the bivariate model resulting from Eq.(15) is 
Eq.(16) in which 𝒙 designates speed, y designates torque and z 
designates the brake power. The brake power (on vertical axis) 

is then plotted against both 𝑥(𝑠𝑝𝑠𝑠𝑑) and y (torque) [on the 
horizontal axis]. 

This is simply done by plotting Eq.(16) in which 𝒙 and y on 
the horizontal plane constitute the independent variables and 
z is the modeled dependent variable. The same thing is done 
for all the other bivariate models. 

 
TABLE 1 

SUMMATION TABLE FOR THE EXPERIMENTAL COODINATES 

Elements of the 
coefficient matrix 

Sum of elements of the 
coefficient matrix 

1 7 
𝑥 21000 
𝑦 564.50 
𝑥2 70000000 
𝑥𝑦 1662000 
𝑦2 4.571975𝑠 + 004 
𝑥3 2.52𝑠 + 011 
𝑥2𝑦 5.43975𝑠 + 009 
𝑥𝑦2 132201000 
𝑦3 3.717951875𝑠 + 006 
𝑥4 9.5725𝑠 + 014 
𝑥3𝑦 1.92735𝑠 + 013 
𝑥2𝑦2 4.24932625𝑠 + 011 
𝑥𝑦3 1.05669195𝑠 + 010 
𝑦4 3.034938021875𝑠 + 008 

Making use of Eq.(15) and table.1 the following bivariate 
models and surfaces for the engine responses are calculated. 

3 RESULTS AND OPTIMIZATION 
3.1 Bivariate Model for Brake Power  
𝑧(𝑥,𝑦) = −8.1458 + 1.4851 × 10−3𝑥 + 0.17215𝑦 − 9.1691 ×
10−8𝑥2 + 9.1845 × 10−5𝑥𝑦 − 9.5256 × 10−4𝑦2 (17)  
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 Fig.1a: The Brake power approximation surface 

 
3.2 Bivariate Model for Brake Time  
𝑧(𝑥,𝑦) = 1073.7 − 0.15266𝑥 − 19.101𝑦 + 5.6658 × 10−6𝑥2 +
1.3286 × 10−3𝑥𝑦 + 9.0557 × 10−2𝑦2  (18) 

            
Fig.1b: The approximation surface for Time of consumption of 100cc 

 
3.3 Bivariate Model for Air/Fuel Ratio  
𝑧(𝑥,𝑦) = 42.487 + 0.021151𝑥 − 0.47443𝑦 − 3.0075 × 10−6𝑥2 −
9.024 × 10−5𝑥𝑦− 1.7503 × 10−4𝑦2   (19) 
 
        

Fig.1c: The approximation surface for a/f ratio 
 

3.4 Bivariate Model for Brake SFC 
𝑧(𝑥,𝑦) = −3.2038 + 3.1904 × 10−4𝑥 + 0.075294𝑦 + 4.4981 ×
10−9𝑥2 − 4.4705 × 10−6𝑥𝑦 − 3.8412 × 10−4𝑦2 (20) 

             

  
Fig.1d: The approximation surface for SFC 

 
3.5 Bivariate Model for Thermal Efficiency  
𝑧(𝑥,𝑦) = 358.06 − 0.030482𝑥 − 7.0822𝑦 − 3.9673 × 10−7𝑥2 +
4.2305 × 10−4𝑥𝑦 + 0.036024𝑦2   (21) 
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 Fig.1e: The approximation surface for Thermal Efficiency 

 
3.6 Bivariate Model for MEP  
𝑧(𝑥,𝑦) = −15.399 + 2.4873 × 10−3𝑥 + 0.71472𝑦 − 1.4104 ×
10−7𝑥2 − 2.2260 × 10−5𝑥𝑦 − 1.8034 × 10−3𝑦2 (22) 

 
Fig.1f: The approximation surface for MEP 

 
3.7 Optimization  
An optimization problem is one requiring the determination 
of the optimal (maximum or minimum) value of a given 
function, called the objective function [8-9]. It has been stated 
earlier in the existing text that the brake thermal efficiency for 
spark ignition engine which this work examines is between 20 
and 30 percent [10]. Eligibility of each of the system’s 
responses for optimization is based on the configuration of the 
approximate surface. It is seen from the surfaces for Brake 
power and mean effective pressure that there is no question 

for optimization being that linear approximation could have 
given an adequately accurate result. Judging from the 
behavior of the generated approximation surfaces the 
candidate for optimization are air-fuel ratio, SFC and thermal 
efficiency. Of particular interest is the thermal efficiency for 
which the optimization is done first. The generated bivariate 
model is: 
𝑧(𝑥,𝑦) = 358.06 − 0.030482𝑥 − 7.0822𝑦 − 3.9673 × 10−7𝑥2 +
4.2305 × 10−4𝑥𝑦 + 0.036024𝑦2   (23) 
Where it should be recalled that 𝑥 represents speed, 𝑦 
represents torque and 𝑧(𝑥, 𝑦) represents thermal efficiency. It 
is seen from Fig.1e. that a clear cut optimal exist at which the 
theory of partial differentiation gives 𝜕

𝜕𝑥
𝑧(𝑥, 𝑦) = 0 and 

𝜕
𝜕𝑦
𝑧(𝑥,𝑦) = 0. As seen in Fig.1e this point has lifted wings due 

to experimental error because (𝑥,𝑦) should vary 
simultaneously. This point should have depressed wings for it 
to be a point of maximum efficiency. Optimality thus satisfies 
the pair of equations 
𝜕
𝜕𝑥
𝑧(𝑥,𝑦) = −0.030482− 2 × 3.9673 × 10−7𝑥 + 4.2305 ×

10−4𝑦 = 0      (24a) 
𝜕
𝜕𝑦
𝑧(𝑥,𝑦) = −7.0822 + 4.2305 × 10−4𝑥 + 2 ×

0.036024𝑦 = 0        (24b) 
Eq.(24) is rearranged into a system of linear equations:
 𝑷𝒙 = 𝒑     (25) 
Where 𝑷 is a 2 by 2 symmetric matrix given as 

�−2 × 3.9673 × 10−7 4.2305 × 10−4
4.2305 × 10−4 2 × 0.036024 �

and 𝒑 = �0.030482
7.0822 �.  

Matrix inversion gives the optimal point as follows: 
𝒙 = 𝑷−1𝒑 =

�−2 × 3.9673 × 10−7 4.2305 × 10−4
4.2305 × 10−4 2 × 0.036024 �

−1
�0.030482

7.0822 �,              

𝒙 = �3387.7rev/min
78.407Nm � 

This is the point of maximum thermal efficiency. When this 
optimal point is inserted into Eq.(21), the maximum thermal 
efficiency becomes 28.777 percent. 
The model generated for SFC is: 
𝑧(𝑥,𝑦) = −3.2038 + 3.1904 × 10−4𝑥 + 0.075294𝑦 + 4.4981 ×
10−9𝑥2 − 4.4705 × 10−6𝑥𝑦 − 3.8412 × 10−4𝑦2 (26) 
From Fig.1d it can be seen that optimality exists when 
𝜕
𝜕𝑥
𝑧(𝑥,𝑦) = 3.1904 × 10−4 + 2 × 4.4981 × 10−9𝑥 − 4.4705 ×

10−6𝑦 = 0      (27) 
𝜕
𝜕𝑦
𝑧(𝑥,𝑦) = 0.075294 − 4.4705 × 10−6𝑥 − 2 × 3.8412 ×

10−4𝑦 = 0     (28) 
It is seen from Eqs.(27) and (28) that 

𝑷 = �2 × 4.4981 × 10−9 −4.4705 × 10−6
−4.4705 × 10−6 −2 × 3.8412 × 10−4

�,                                                                                                                                             

𝑷 = �−3.1904 × 10−4
−0.075294 � . Matrix inversion gives the optimal 

point as follows: 
𝒙 = 𝑷−1𝒑 =

�2 × 4.4981 × 10−9 −4.4705 × 10−6
−4.4705 × 10−6 −2 × 3.8412 × 10−4

�
−1
�−3.1904 × 10−4

−0.075294 �,

𝒙 = �3402 rev/min
78.212 Nm � 
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When this point is inserted into Eq.(20) optimal SFC=0.28336 
results. This is the optimal value for SFC.  
 
The model for air-fuel ratio is seen from Eq.(19) to be: 
𝑧(𝑥,𝑦) = 42.487 + 0.021151𝑥 − 0.47443𝑦 − 3.0075 × 10−6𝑥2 −
9.024 × 10−5𝑥𝑦− 1.7503 × 10−4𝑦2   (29) 
It is clearly seen from the air –fuel ratio surface of Fig.1c that 
optimality that is approximately constant with torque exists at 
some value of speed. Thus the idea of optimization used here 
is to keep Torque fixed and differentiate with respect to speed 
to give   
𝜕
𝜕𝑥
𝑧(𝑥,𝑦) = 0.021151− 2 × 3.0075 × 10−6𝑥 − 9.024 × 10−5𝑦 =

0             (30) 
This is rearranged to give: 𝑥 = 0.021151−9.024×10−5𝑦

2×3.0075×10−6
  

    (31) 
A convenient value for 𝑦 is then chosen to give an optimal 
location for air-fuel ratio. Since each of thermal efficiency and 
SFC has clear cut optimal locations that are very close to each 
other it is recommended that 𝑦 value to be inserted in Eq.(31) 
can be located at either the arithmetic or geometric mean of 
the optimal locations of thermal efficiency and SFC. The 
arithmetic or geometric means of the optimal locations of 
thermal efficiency and SFC are respectively given by 

𝒙𝑎𝑚 =
1
2
��3387.7rev/min

78.407Nm �+ �3402 rev/min
78.212 Nm ��

= �3394.8rev/min
78.31Nm � 

𝒙𝑔𝑚 = ��3387.7rev/min
78.407Nm ��3402 rev/min

78.212 Nm � = �3394.8 rev/min
78.309 Nm � 

It is seen that both arithmetic and geometric means of the 
optimal locations of thermal efficiency and SFC are almost 
identical. Then 𝑦 = 78.31 say is inserted into Eq.(31) to give 
𝑥 = 2341.5. The optimal air-fuel ratio of 20.75 occurs at 𝒙 =

�2341.5 rev/min
78.31 Nm �.  

4 CONCLUSION 
A bivariate mathematical model for the analysis of engine 
Performance parameters of four stroke spark ignition engine 
was developed. The general non-linear multivariate least 
square modeling was carried out resulting in specific bivariate 
models for various engine performance measures. This 
enabled analytical optimization of the engine performance 
using the tool of partial differentiation. Optimization is carried 
out on each of air-fuel ratio, SFC and thermal efficiency 
because the surface plots of their bivariate models revealed 
existence of curvature. Optimization yielded that maximum 
thermal efficiency exists at the point  

� 𝑆𝑝𝑠𝑠𝑑𝑇𝑇𝑟𝑇𝑇𝑠� = �3387.7rev/min
78.407Nm � as 28.777 percent. Accuracy and 

reliability of this optimum must be noted being that it has 
been stated earlier in the existing text that the brake thermal 
efficiency for spark ignition engine which this work examines 

is between 20 and 30 percent [11]. The optimal value for the 

SFC is calculated as SFC=0.28336 at the poin � 𝑆𝑝𝑠𝑠𝑑𝑇𝑇𝑟𝑇𝑇𝑠� =

�3402 rev/min
78.212 Nm �. Optimal air-fuel ratio of 20.75 computed for 

the engine to occur at � 𝑆𝑝𝑠𝑠𝑑𝑇𝑇𝑟𝑇𝑇𝑠� = �2341.5 rev/min
78.31 Nm �. It must be 

pointed out that the results of the generated bivariate models 
for various engine performance correlate closely with those of 
both experiment and MATLAB simulation.  Based on the 
achievements or contributions listed above, it can be 
concluded that this research work has attained its set 
objectives. 
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